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We discuss a single server queue whose input is the

versatile Markovian point process recently introduced by

M. F. Neuts (c.f. Tech Report #77/13,rbept. of Statistics &
CS, Univ. of Delaware), ﬁérein to be called the N-Process.
Special cases of the N-Process discussed earlier in the
literature include a number of complex models such as the
Markov-modulated Poisson Process, the superposition of a
Poisson Process and a Phase Type Renewal Process etc. This
queueing model has great appeal in its applicability to real
world situations especially such as those involving inhibi-
tion or stimulation of arrivals by certain renewals. The
paper presents formulas in forms which are computationally
tractable and provides a unified treatment of many models
which were discussed earlier by several authors and which
turn out to be special cases. Among the topics discussed are
busy period characteristics, queue length distributions,
moments of the queue length and virtual waiting time. The

analysis presented here serves as an example of the power of

Markov Renewal Theory.
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CHAPTER I
THE N-PROCESS AND THE N/G/1 QUEUE

1.1 Introduction

In this Chapter we discuss a versatile class of point
processes on the real line which are closely related to
finite-state Markov processes and indicate how a substantial
number of models hitherto used in the literature for modeling

arrival processes are particular cases. This process was

recently introduced by M. F. Neuts [22], and we shall hence-
forth réfer to it as an N-Process. Herein we also define

the N/G/1 queue which is the subject matter of this paper.

Section 1.2 discusses probability distributions of

Phase Type (PH-Distributions) and Phase Type Renewal Processes
(PH-Renewal Processes) which were also introduced by Neuts
[14,20] and which form the sub-strata for the definition of
the N-Process. In Section 1.3 we define the N-Process and

summarize some useful results regarding such a process.

In Section 1.4 we define the N/G/1 queueing model and
describe the semi-Markov sequence imbedded therein. Finally,
the last section provides a number of interesting special

cases of the N/G/1 model some of which have been previously

discussed.




1.2 Phase Type Distributions and Phase Type Renewal
Processes

Although the phase concept has been used extensively in
the literature since its introduction by A. K. Erlang [5],
the use of general phase distributions has remained limited
until recently. The simplest distributions of phase type due
to Erlang and bearing his name have been generalized by some

authors [3,9] by considering mixtures of them, different

parameters for different phases, random number of phases etc.
A systématic discussion of the general phase concept and the
accruing benefits in modeling a wide variety of interesting
qualitative features especially of interest in Queueing Theory
are due to Neuts [14] who has also demonstrated the power of
the method of phases in a series of papers [15,16,17]. We
refer the reader to the cited references for a complete
discussion of Phase Type distributions and their usefulness,
giving only a summary of those results pertinent to our
discussion.

Consider a continuous-time Markov Process with state-
space {1,...,m,m+1} for which the states 1,...,m are transient
and the state m+1 is absorbing. We assume that starting at
any transient state, absorption into m+1 is almost certain.

The infinitesimal generator Q of such a Markov Process then

oY ;
Q= g 0 ’ (].2.])

where T is an mxm matrix with T;7<0 and Tijgo for i#j such

has the form




that T'] exists. The vector T° is nonnegative and satisfies

Te+T°=0, where e=(1,...,1)'. A vector (a, am+]) of initial

probabilities is also given and satisfies aeta__.,=1, Ogam+1<1.

m+1

For the above Markov Process, the probability distribu-
tion F(+) of the time till absorption in the state (m+1) is
given by

F(x) = 1-a exp(Tx)e, x20 {1.2.2)

Definition 1.2.3: Any probability distribution F(-) on [0,~)

constructed as above will be called a Phase Type Distribution

(PH-Distribution). The pair (a,T) will be called a represen-
tation of F(-).

In the sequel we shall assume that am+]=0 so that F(-)
does not have an atom at 0. In [14] it is shown that one may,
without loss of generality, assume that the representation
(a,T) of F(+) is so chosen that the matrix

g* = T*T°A°, (1.2.4)
where T° is an mxm matrix all whose columns are T° and
A°=diag(a],...,am), is irreducible. Henceforth we assume
that this is indeed the case.

The matrix Q*, which is of considerable importance, is

the infinitesimal generator of the Phase Type Renewal Process

(PH-Renewal Process) which is obtained by restarting the

Markov Process Q instantaneously after each absorption
(renewal) by performing a multinomial trial with probabilities
a and outcomes 1,...,m. Note that the times between

successive renewals of such a renewal process is the




PH-Distribution F(-) described above thereby suggesting its
nomenclature.

For later use we also introduce the following notations.
8 will denote the invariant probability vector of the Markov
Process Q*, i.e., the unique (strictly positive) vector
satisfying
eQ* = 0, oe = T, £1.2.5)
We recall from [20] that the stationary version of the PH-
Renewal Process is obtained by starting the Markov Process Q*
with initial probability vector 6. We also recall that the

mean of F(+) is given by
-1

uy = -aT e. {1.2.6)
It is now easily verified that
Ll -1 ;
& =7 L-al . (1.2.7)

1
In the sequel A°° will denote an mxm matrix all whose rows are

a. Also the mxm matrix each of whose rows is 8 will be

denoted by 0.

1.3 The N-Process

The Markov Process Q* described in Section 1.2 will be
the sub-stratum for the definition of the N-Process. A
transition in the Markov Process Q* from the state i to the

state j will be called an (i,j)-~transition if it does not

involve a renewal (i.e., no visit to the "instantaneous"

state (m+1)), and an (i,j)-renewal transition otherwise.

Note that unlike the former, the latter may go from a state

to itself. We are now ready to describe the arrival process




of interest in terms of the following assumptions.

J Assumptions regarding arrival epochs and group sizes

(A) During any sojourn of the Markov Process Q* in the state

i, lgizm, there are Poisson arrivals of rate A1 and group

size density {pi(k): k20}. We Tet ¢i(z) denote the p.g.f. of
{p;(k)} and Tet ¢(z)=(41(2),...,0.(2)).

(B) At (i,j)-renewal transitions there are group arrivals
with probability density’{rij(k): k>0} whose p.g.f. is °ij(z)’
Let ¢(z) denote the mxm matrix of entries ¢1j(z).

(c) At (i,j)-transitions, i#j, there are group arrivals with
probability density {qij(k): k>0} whose p.g.f. is wij(z).

For notational convenience in the sequel we set wii(z)sl,

Tgigm and let y(z) denote the mxm matrix of entries wij(z).

Independence Assumptions

(D) For every t>0, given the path function of the Markov
Process Q* the epochs of the Type A arrivals are conditionally
independent given the successive sojourn times, and behave as
a homogeneous Poisson process on every sojourn interval.

(E) Given the times and types of the arrival epochs up to

i
i
i
i
5
i
f
£
¥
i
f
£
|

time t, the group sizes are conditionally independent and

have the probability densities given above.

Definition 1.3.1: The arrival process defined by the fore-

going assumptions (A)-(E) is called an N-Process.
Let N(t) and J(t), t20, denote respectively the number

of arrivals in (0,t] and the state of the Markov Process Q*




b at t+. (J(t) will be referred to as the phase at t). It is
! then easy to see that {(N(t),J(t)): t>0} is a Markov Process

with state-space {0,1,...}x{1,...,m}.

In [22] it is shown that the mxm matrices of probabili-
ties P(v.t)=(Pij(v,t)), v20, t20, where

Pij(v,t)=P{N(t)=v,J(t)=jIN(0)=0,J(0)=i}, s.2)
have generating function
5(2,t)=v§02“P(v,t)=exp[R(z)t], 2|1, (1.3.3)
with
R(z)=a(r)a(9(2z))-a(A)+Toy(2)+T°A%00(2), (1.3.4)
where
a(A)=diag(nyse . i)y (1.3.5)
and
a(e(z))=diag(¢,(z),...,0,(2)), {1.3.6)

and 'o' here and in the sequel denotes the Schur product
(entrywise product) of two matrices. Further it is shown

that the matrix

M(t) =[§—z ﬁ(z,t):] (1.3.7)
z='|-

is given by

P LT n-1 % Sy n-1-v

M(t) = = sr I Q*" R'(1) Q* 5 (1.3.8)
n=1 7° v=0

where

R'(1) = A(Xoy)+ToC+T°A°0D, (1.3.9)

with




y=¢'(1-), C=¢'(1-), D=¢'(1-) (1.3.10)
A(roy) = diag(A]Y],...,Amym). 1.2.113

Also the vector
e(t) = M(t)e, (1.3.12)

whose j-th component is the expected number of arrivals in
(0,t] given J(0)=j is given by
E(t)=e*te+(I-0) (t*0-0%)"'R*(1)e +
[0-exp(Q*t)](t*0-Q*) 1R' (1)e, (1.3.13)
where

E*¥ = 0R'(1)e {1.3.14)

and t* is any real number such that r*;qu(-Q?i). We also
recall that g* is the arrival rate for t;e stationary version
of the N-Process which is obtained by starting the underlying
Markov Process Q* according to 6.

The following theorem gives an interesting interpreta-

tion for the quantity &* which will be useful Tlater.

Theorem 1.3.15: &* is the ratio of the expected number of

arrivals during a typical renewal interval of the underlying
PH-renewal process to the expected length of that renewal

interval.

Proof: Let N], N2, N3 denote respectively the number of
arrivals of types (A), (B) and (C) (described in the defini-
tion of the N-Process) during a typical renewal interval.

It is easily seen that




E(N]) % . 5.0 [a exp(Tx)].A.y.dx=-gI']A(Aol)g,
j o- JJ'J
E(Nz) § i .(I;_[_a_ exp(Tx)]JTE‘;akDJkdx--aT-](T°A°oD)g,

and

E(N;) = £ 5/ [a exp(Tx)1,T dx=-oT 1 (ToC)e.

j k 0- 53Kk

Adding the above three quantities and dividing by ”i’ we
have, by (1.2.6), (1.2.7) and (1.3.9) that

lr E(N#+N,+N,) =R " (1)e=¢*,
L
and hence the result.

Remark: In view of the above theorem we may consider &£* as a
“generalized" arrival rate for the N-Process.
We now present some results concerning the matrix
R(0)=a(2)a(4(0))-a(2)+Toy(0)+T°A%00(0)

which are somewhat technical in nature and which will be
found necessary for the sequel. Before we do this, let us

recall [12] the following regarding Stability matrices.

Definition 1.3.16: An mxm matrix A of complex numbers is

said to be semi-stable if Re(6,)z0 for every eigenvalue §; of

A. It is stable if Re(si)<0 for every i.

Lemma 1.3.17: [12]: 1If A= (ai ) is an mxm real matrix, aiJ>0

for i#j, and there exist positive numbers t1,...,tm such that
j iJ<0 1=l 5 ene sl

then A is semi-stab]e




We are now ready to prove

Theorem 1.3.18: The matrix R(0) is semi-stable.

Proof: By comparing R(g) with Q* one can easily show that
for all i, R;;(0)<0 and z R;;(0)<0. Since R;3(0)20 for al
i#j as is seen directly, R(0) satisfies the conditions of

Lemma 1.3.17 with t]=...=tm=1.

Before we proceed with our discussion of R(0) we 1ist
the following well-known results governing a nonnegative mxm
matrix A#0. We refer to Gantmacher [6] for the proofs of
these results.

r (R1): |61| < M?x L aij for every eigenvalue Gi of A.
v J

(R2): There exists a nonnegative eigenvalue § of A satisfying

i 5;|51| for any other eigenvalue 6, of A. & is called
' the Perron-Frobenius (PF) eigenvalue of A.

] (R3): Suppose B is irreducible and B>A. If the PF-eigen-
values of A and B are equal, then A=B.

1 (R4): If A is stochastic, then the PF-eigenvalue of A is 1.

Suppose now that the matrix R(0) is not stable. Then by
Theorem 1.3.18, R(p) has an eigenvalue which is zero or
purely imaginary. In either case for every t>0, exp[R(0)t]

has an eigenvalue which has absolute value 1. Now note that

g

for all i,j,




(exp[R(0)t1};, 51j(0,t)

P[N(t)=0,Jd(t)=j|N(0)=0,d(0)=1]

nA

PLa(t)=j[N(0)=0,d(0)=i]

Pis(1,t)=Cexp(Q*t)], .

Since 1 is the absolute value of an eigenvalue of exp[R(0)t],

by (R1) and (R2) and the sub-stochasticity of P(0,t), we now

have that the PF-eigenvalue of P(0,t) is 1. Our assumption

of the irreducibility of Q* and (R3) now imply that
exp[R(0)t] = exp[Q*t] for all t>0,

or

R(0) = Q*.

Thus we have proven

Theorem 1.3.19: If R(0)#Q*, then R(0) is stable.

Remark: The condition R(0)#Q* is equivalent to asserting
that for some i, 1gigm, at least one of the conditions
a) ;01-4;(0)150,

or
c) for some j#i, Tij[l-wij(O)]>0,

is true. From the definition of these quantities above, it
is clear that if the above condition is not met then the N-
: Process cannot develop beyond zero.

We shall from now on make the assumption of non-

triviality of the N-Process, viz., R(0)#Q*, so that the




P

conclusion of Theorem 1.3.19 holds. A useful consequence of

this assumption we now record as

Corollary 1.3.20: [sI-R(0)]”! exists for all s>O0.

Proof: Since R(0) is stable, every eigenvalue of sI-R(0),

for s>0, has positive real part and hence the result.

1.4 The N/G/1 Queue and the imbedded semi-Markov Sequence

R

We consider a single server queue in which arrivals
occur according to an N-Process defined in the previous
section, and the service times of successive customers are
independent identically distributed random variables. It is
assumed that the input and the service processes are mutually
independent. Such a model will be denoted by N/G/1.

For the purpose of discussing queue length, busy period
etc., it is clear that the order of service is immaterial;

all that we shall assume are that the server cannot idle as

~long as there are customers in the system, and that having

started a customer's service, the server must proceed to its
conclusion without interruption. In Chapter V, fok the
purpose of discussing the virtual waiting time alone, we
shall make the additional assumption that the server must
serve the groups in the order of their arrival, the order of
service within each group, once again, being arbitrary.

For describing the N-Process characterizing the input we
shall use the same notations used in Section 1.2. The

service time c.d.f. assumed to be non-degenerate will be

B T T T TP T T T

=




denoted by H(-), its Laplace-Stieltjes transform (LST) by
H(+) and its moments (about the origin), whenever they exist,
by u{1), i=1,2,...

We now define the r.v.s. {7 : nz0} as the successive
epochs of departure and assume t.,=0. Defining Xn and Jn to

0
be respectively the queue length (i.e., the number of cust-

omers in the system) and the phase of the N-Process at rn+.
it is easily seen that {(Xn,Jn,rn+1-rn): n>0} form a semi-
Markov sequence with state-space {0,1,...}x{1,...,m} and
transition probability matrix Q(-) given by
i £ B
Bo(x) Bl(x) Bz(x) g
ﬁo(x) ﬁl(x) Az(x)
Q(x) = 0 Aglx) Aj(x) ... .| x20, (1.4.1)
0 0 Ro(x)
SRR n v - o v ]
where the mxm matrices of mass functions
ﬂn(x) = %-P(n,u)dﬁ(u), n20, x20, {1.4.2)
« s DR
B,(x) = k£1(uk*A“'k+])(x)' n20, x30, (1.4.3)
and
B ()=(7_P(0,y)yHTeA%ar (K)+Toa(K)+a (1) (p(K))),
k21, x20 (1.4.4)

where r(k) and q(k) are mxm matrices with respective entries

rij(k) and qij(k)’ p(k) is an m-vector with entries pi(k)




and A(p{(k)) is an mxm diagonal matrix with p(k) along the
diagonal. Also x in the definition of ﬁn(-) tn (7.4.3)
denotes matrix convolution. We note that the (i,j)-th entry
of ﬁk(x) is the conditional probability, given J(0)=i, that
the first arrival occurs at or before x and is of group size
k, and that the phase of the N-Process at the epoch of the
first arrival is j.

We now introduce the following notations for use in the
sequel. Rii(x) will denote the renewal function giving the
expected number of visits in [0,x] to (k,2) by the Markov
Renewal Process defined by Q(:) given that the initial state
is (i,j). Also m(i,j) will denote the mean recurrence time
of the state (i,j) in the Markov Renewal Process Q(-). For
the results governing these quantities we refer the reader to
¢inlar [2] and Hunter [8].

Before concluding this section we point out that most of
the results in the sequel are obtained by studying the
imbedded semi-Markov sequence described above, and we shall
invoke many a result from the iiterature governing semi-
Markov and Markov Renewal processes. The basic definitions
and results on these processes are by now quite well-known,
and an excellent account of these may be found in the work of
¢inlar [2]. Among the basic references in this connection
[2,8,18,24,25], we draw particular attention to those of
¢inlar [2], Hunter [8] and Neuts [18].




1.5 Some Special Cases of the N/G/1 model

Below we present a few interesting special cases of the
N/G/1 model. Most of the material below is based on Neuts

[22] and presented here for completeness.

(a) PH/G/1 Queues: In the definition of the N-Process if we

set Ay=...=2, =0, v(z)=E, o(z)=p(z)E, where E is an mxm matrix
each of whose entries is 1, and where p(z) is the p.g.f. of
the group size, then we get the PH/G/1 queue (with group
arrivals) wherein the inter-arrival times are i.i.d. phase
type with c.d.f. F(-) givén by (1.2.2). As pointed out
earlier, queues with exponential, generalized Erlang and
hyper-exponential inter-arrival times are but few of the
special cases of this large class whose versatality stems
from the closure properties of Phase Type distributions

proven in [14].

While some of the very special cases in this class such
as the M/G/1 and Ek/G/1 models have been discussed earlier in
the literature, there is no systematic discussion of PH/G/1
queues in their generality. The nearest attempts at this are
the work of Carson [1] who discussed computational methods
for PH/PH/1 queues, i.e., queues where both inter-arrival and
service times are of Phase Type and that of Cox [3] who
discussed queues with "rational arrival processes", a class
of processes which is only slightly more general than PH-
Renewal Processes. In this connection we point out that

the present theory on rational arrival processes, due to




its heavy reliance on complex arithmetic, is not computa-
tionally very attractive. As will be seen in the sequel,
the formulas in this paper are presented in a form computable

in real arithmetic.

(b) Superposition of a Poisson Process and a PH-Renewal

Process: Kuczura [10] considers a queue whose input process
is the superposition of a Poisson and a renewal process where
the inter-arrival times of the latter have a rational Laplace-
Stieltjes transform. This is only slightly more general
than considering the superposition of a Poisson Process and a
PH-Renewal Process. In [22] Neuts has pointed out the
practical merit of considering queues of this type where the
Poisson Process describes a "background input" and the PH-
Renewal Process (with group arrivals) describes "burst
inputs". Such a process corresponds to a given matrix T and
a vector a and the parameter choices Aisx, ¢i(z)Ez’
¢(z)=p(z)E, w(z)=E, where p(z) is the p.g.f. of the group
size in the renewal arrival process and E is an mxm matrix

with each entry equal to 1.

Stochastic models which involve superposition of (even
as few as two) general renewal processes are, in most cases,
intractable. The results in the sequel become important when
one notes that the N-Process contains as special cases a

large number of such complex models as the one described

above.




(c) Queues with Markov-Modulated Poisson Arrivals: If in

the definition of the N-Process we set y(z)=¢(z)=E where E
is an mxm matrix of 1's, and ¢1(z)=z for 1gigm, then we
obtain the Markov-Modulated Poisson arrival process which
has been used by several authors [13,21,23,28] to describe
the input to queues. Such a process can be used to model a
large variety of queueing phenomena such as rush-hour
behavior and others. The work of Heffes [7], which, in a
telephone engineering context, deals with the interrupted
Poisson Process in which arrivals occur on alternating
exponentially distributed intervals, is of this type and
corresponds to the choice

-0 o 0 :
T = ] 1 ’ I_o = sy & = (],0) )1;

“%2 %2

A=A, ¢](z)sz. Az=0. ¢2(z) arbitrary, ¢(z)=y(z)= 11

The model of Heffes can be easily generalized by defining an
interrupted Poisson Process on an alternating renewal process
of phase type. For further discussion on this we refer the

reader to Neuts [22].

(d) Queues with arrivals inhibited or stimulated by renewals:

In his paper [22] Neuts discusses how tractable qualitative
models for arrival streams which exhibit an inhibition or
stimulation of arrivals for a certain length of time by
certain renewal epochs can be modeled as an N-Process. Such

models are of considerable practical interest.
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A PH-Distribution is called progressive if it has a

‘representation (a,T) in which T is upper-triangular. It is

easy to see that a PH-Distribution is progressive iff it is
a finite mixture of generalized Erlang distributions. Since
every path function of the Markov Process Q is then non-
decreasing, we can, by suitable choices of the Ai-parameters
of states close to renewals, model any inhibitory or

stimulatory effect of the renewal.

The exampies presented above should indicate to the
reader the wide gamut of queues that are special cases of the
N/G/1 model. The ensuing discussion which presents a unified
treatment of these special cases in a computationally
tractable form, we hope, enhances the merit of the N-Process

as a versatile model for describing input to queues.
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CHAPTER II

THE BUSY PERIOD AND THE BUSY CYCLE

2.1 Introduction

In this Chapter we show that the Semi-Markov Process
Q(-) defined in Section 1.4 is a special case of a general
class of such processes studied by Neuts [18]. Appealing to
the results proven in [18] we obtain, in terms of an appro-
priately defined traffic intensity p, a necessary and
sufficient condition for the stability of the N/G/1 queue and
derive the busy period characteristics in terms of the
minimal solution in the class of sub-stochastic matrices of a
certain non-linear matrix functional equation. The necessary
notations and preliminaries to this end are set forth in
Section 2.2. In Section 2.3 we discuss the busy period of
the N/G/1 queue obtaining the joint transform of the number
of services during a busy period and the duration of the busy
period. We also obtain the expected number served during a
busy period in an easily computable form. The last section

provides a similar discussion of the busy cycle.

2.2 Notations and Preliminaries

Throughout this paper we shall adopt the convention to

denote probability mass functions by upper-case Roman letters




superscripted by a tilde and their Laplace-Stieltjes trans-
forms (LST's) by the same letters without the tilde. Thus
Uk(-), An(-) and Bn(°) will respectively denote the LST's of
U () in(') and B, (-). The values of these LST's at 0+ are
respectively denoted by Uk’ An and Bn' We Tet

A(x) = = A (x) (2.2.1)
n=0
and denote the LST of A(+) by A(-). Also A=A(0+). We now

define the generating functions

A(z,s)=
n

nm™s8

; Ah(s)z", |z|s1, Re s20, (2.2.2)

and
U(z,s)= L Uk(s)zk, |z|<1, Re s20, (2.2.3)
k=1
and note that A=A(1,0), U=U(1,0).

Lemma 2.2.4

For |z|s1, Re s20,

U(z,s)=[sI-R(0)1"'[R(2)-R(0)] (2.2.5)

Proof

U(z,s)= ¢ 255 e 5% dd, (x)
0-

=
o8
]

=[Z e'sxP(o,x)dg] [kglzk{T°A°or(k)+Toq(k)+AQ)A(g(k))a

by (1.4.4)
=[s1-R(0)]™'[R(2)-R(0)]

by Corollary 1.3.20, and the fact that




 2X(T°A%or(K)+Toq(k)+a(2)a(p(k))1=R(2)-R(0)
k=1

which is an easy consequence of (1.3.4).

Basic to our discussion of the busy period and the busy
cycle are the first passage times of the semi-Markov process
Q(-) from the set of states i+1={(i+1,j): 1sjsm} to the set
of states i={(i,j): 1gjsm}. We now set up a number of
notations to describe these first passages.

Let Gg}g(k,x) be the probability that, given that the
semi-Markcv process Q(-) starts in the state (i,j), it reaches
the set 0 for the first time after k transitions by visiting
the state (0,j') and the time of such a first passage is
atmost x. The matrix G[i](k,x) will have the entries
éE}J(k,x), 1<j,3'<m.

In particular, the matrix G[]J(k,x) will be denoted by
G(k,x). The sequence of matrices {G(k,x): k20}, x30, defines
completely the first passage time distributions from 1 to 0,
and, as noted by Neuts [18], in view of the structure of Q(-)
also from i+l to i, for i20. We define the transform

6(z,s)= £ 1 e S¥d&(k,x)z¥, (2.2.6)
k=1 0~
for |z|<1 and Re s20. For notational convenience we shall
write G(1-,0+) as G.

Noting that Q(-) has a structure same as the general

class of such matrices discussed by Neuts [18], we can

specialize the general results to the case at hand. Before




we state the relevant results, following Neuts [18], let us

give the

Definition 2.2.7: The semi-Markov process Q(+) is boundary
leading iff G>>0.

The following theorem establishes the boundary leading

property of the semi-Markov process Q(-).

Theorem 2.2.8:

(i) A is irreducible and stochastic.

(ii) The diagonal entries of Ao are all positive.

Proof:
(i) follows from the irreducibility of Q* and the non-

degeneracy of H(-), in view of the relation

A =7 exp(Q*t)df(t). (2.2.9)

(ii) is obvious by noting that for every 1gizm,
Ag(i,i) = 6_ P.;(0,x)dH(x)
and that P,.(0,x)>0 for every x20.

Corollary 2.2.10: The semi-Markov process Q(+) is boundary

leading.

Proof: By Theorem 2.2.8 and the structure of Q(:), it is
seen that Q(=) is irreducible. It is obvious that this
implies the boundary leading property.




We now state the btasic results obtained by Neuts [18] as

Theorem 2.2.11:

(i) If we define G[i](z,s) as the analogous transform
of {G[i](k,x): k20, x>0}, then G[i](z,s) is the i-th power of
the matrix G(z,s).

(ii) G(z,s) satisfies the non-linear matrix functional

equation

6(2,5)=2 §0 A (5)6"(2,5)=2A(6(z,5),5)  (2.2.12)
n=

where A(z,s) is as in (2.2.2).

(iii) For 0<zgl, s>0, there exists a unique nonnegative
matrix G(z,s) which satisfies Equation (2.2.12). The entries
of G(z,s) are analytic functions of z and s, and the matrix
G(z,s) may be written in the form (2.2.6), and the entries of
all matrices G(k,+), k20 are probability mass functions. The
matrices G(k,=), k>0 are all nonnegative, and the matrix

G(k,=), d2.2.13)

G = G(]',O"') =
_ 1

no 8

k
defined by continuity, is sub-stochastic.
(iv) Let p=m8, where = is the invariant probability

vector of A and

B= ® nAe. (2. 2. 14}

If pg1, the matrix G is stochastic. If p>1, at least one

component of Ge is less than one.




(v) The matrix G is the minimal solution, in the class
of sub-stochastic matrices, of (2.2.12) with z=1, s=0, and

can be computed by the recurrence relations

G,=0

0 ¢
! {2.2.18)

Gn+1 g
v

n ™8

AGY, n>0
0 v n =

The matrices {G : nx0} defined above are non-decreasing.
(vi) The Markov Renewal Process defined by Q(:) is
positive recurrent, null recurrent or transient according as

p is less than, equal to or greater than 1.

Remarks :

(i) The equation (2.2.12) is the analogue of Takacs'
equation [26] for the M/G/1 queue.

(ii) The recurrence relation (2.2.15) yields rapid con-

vergence and thus facilitates easy computation of the matrix

Gl

Theorem 2.2.16:

(i) ==6, where & is the invariant probability vector
of Q*.
(1)

(i1) p=t*n , where £* is the "arrival rate" given by
(1.3.14) and u(I) is the mean service time.

(iii) The N/G/1 queue is stable iff p<1.

Proof:
(i) follows from (2.2.9) and the uniqueness of the

invariant probability vector.




R~y

(i1) Noting that

g.= "An§={:7 A(z,s)e

nm™ 8

n=1

-]

s M(t)e dH(t),
0-

we have by (1.3.8)
© S n n-1 -
8 = f{ z ,f—.— g QaVRA () get1nY g} dH(t),
0-Un= s

whence,
p=Ag = EF u(])
in view of (1.3.14) and the fact that 6Q*=0.

(iii) is only a re-statement of Theorem 2.2.11 (vi).

Remark: In view of the remark following Theorem 1.3.15, p

may be called the traffic intensity of the N/G/1 queue. The

N/G/1 queue is stable iff the traffic intensity is less than

1. In the sequel we shall always assume that p<1.

2.3 The Busy Period

Note that from its definition it is clear that G[k](z,s)
for k>1 completely specifies the busy period which starts
with k customers of the N/G/1 queue. In this section we will
be concerned with the first busy period of the N/G/1 queue
given that the queue starts with no customers at time 0. As
will be evident later, this discussion will be found useful

in determining the invariant probability vector of Q(«).
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In the last section we noted that the matrix G is
strictly positive and stochastic. We let g denote the invar-
iant probability vector of G and define G°° to be the mxm
matrix each of whose rows is g. Defining ¥ to be the
expected first passage time from (i+1,j) to i, 120, in the
semi-Markov process Q(+) and ﬁj to be the expected number of
service completions during such a first passage, we can
easily prove the following result which yields the vectors

u and g whose j-th components are respectively ”j and ﬁj.

Theorem 2.3.1:

B o= (I-G+G°°)[I-A+G°°-4(8)6°°] e (2.3.2)
and

u=(1-6+6°°) [1-A+G°°-a(g)Ge°] Tu( Ve, (2.3.3)

where A(g)=diag(61,...,8m) and g is as in (2.2.14).

Proof: It is shown in [18] that

i=(1-6+6°°) [1-A+6°°-a(8)6°°] e

and

1 E=(I‘G+G°°)[I‘A"‘Goo-A(ﬁ)Goo]-] ; A'(‘])_e_.
n=0

where

3 RS
An 6_x dAn(x).

The theorem follows by noting that
z Aél)g = [ X dﬁ(x)g = u(])g
= 0=~

n=0




Remarks: Higher moments of the duration of the first passage
times and the number served during such first passages can be
found by differentiation of equation (2.2.12). We refer the
reader to Neuts [18] for the formulas and computational

methods governing these quantities.

Corollary 2.3.4:

g = g (2.3.5)

Remark: Equation (2.3.5) simply states that the expected
first passage time is the product of the expected number
served during such first passage and the expected duration of

each service, a result which is intuitively quite obvious.

Corollary 2.3.6:

Erea)l (2.3.7)

=2
]

|

s (2.3.8)

gu

Proof: These follow easily from (2.3.2) and (2.3.3).

Remark: The formulas (2.3.5), (2.3.7) and (2.3.8) provide
powerful computational checks on the accuracy of numerical
computations of y and y using Theorem 2.3.1. Having computed
G using (2.2.15), with a 1ittle additional effort one can
easily compute g using an algorithm such as Wachter's method

[27].

We now define L(z,s) to be the joint transform of the

number served and the duration of the first busy period of the
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N/G/1 queue, given that at time 0O there are no customers in
the system. The matrix of mass functions L(k,x) associated
i‘ with L(z,s) is such that its (j,j')-th entry is the con-
ditional probability, given X(0)=0 and J(0)=j, that the first
busy period of the N/G/1 queue i§ of duration less than or
equal to x and consists of k services and that at the epoch
where the busy period ends the phase of the N-Process is j'.

A direct probabilistic argument yields

Theorem 2.3.9:

L(z,s)=

oyl
nm™msg
-

U, (0) 6K(z,s)=U(6(z,s),0)  (2.3.10)

where U(z,s) is given by (2.2.3).

Defining ﬁg and "3 to be respectively the mean number
served during and the mean duration of the first busy period
given X(0)=0, J(0)=j, and u* and p* to be the vectors with ﬁ§
and "3 as their respective j-th entries, 1<jsm, we can now

prove

Theorem 2.3.11:

i*=[U(1,0)-U(6,0)-R™T(0)R' (1)6°°1(1-G+G°°) 15 (2.3.12)

u*=[U(1,0)-U(6,0)-R™T(0)R'(1)6°°1(1-6+6°°) Ty (2.3.13)

by (2.3.10)

-




o, S (0)(I-Gk+kG°°)] (1-6+6°°) 15
k=1 K

=[U(1,0)-U(6,0)-R"1(0)R" (1 )G°°](I-G+G°°)']£-

The third equality above is obtained by rewriting
k-1 k-1
G\’={ z G"(I-G+G°°)} (1-G+G°°)!
v=0 v=0
and using the fact that GG°°=G°°G=G°°. The last equality

follows from

k U, (0) = -R7T(0)R* (1),

no~ 8

k=1
a formula provable by differentiating (2.2.5) with respect to
Zz and setting z=1-, s=0+.

The proof of (2.3.13) is analogous and hence omitted.

Corollary 2.3.14:

u* = u“) Ty (2.3.15)

Remarks: Although the formulas (2.3.12) and (2.3.13) above
appear to be rather complicated, in actual practice they are
well-suited to numerical compufations. Note that
U(l,0)=I-R-](0)(T+T°A°) while implementing these formulas.

The formula (2.3.15) is, once again, quite intuitive.

2.4 The Busy Cycle

The subject matter of this section are the successive
returns of the semi-Markov process {(:) to the level 0. Let
Ko(z.s) be the joint transform of the number served during

and the duration of the busy cycle. Ko(n,x), the matrix of




mass functions, of which K(z,s) is the transform is such

that its (j,j')-th entry yields the conditional probability,
given that the busy cycle starts in phase j, that the busy
cycle consists of n services, is of duration atmost x and
ends in phase j'. By a direct probabilistic argument we
obtain

Theorem 2.4.1:

Ko(z,5)=[sI-R(0)]17'[-R(0)]L(z,s) (2.4.2)
where L(z,s) is given by (2.3.10).
Proof:

Ko(z,s)=v§0sz(s)G°(z,s)

vt+1 9
oz{kil Uk(s)Av_k”(s)} G (z,s)

Uk(s)Gk(z,s), using (2.2.12)

1]
nm™ 8

\Y

n o8

k=1
=U(G(z,s),s)

=[sI-R(0)17" = (T°A°0r(k)+Toq(k)+a(r)a(p(k)) 16X (2,s)

=
e~ 8
—

=[sI-R(0)]'][-R(0)]k;] U, (0)6%(z,5)

=[sI-R(0)17'[-R(0)IL(z,s).




By evaluating -%; Ko(l,s)g , We can easily prove
5=0+

Theorem 2.4.2: Let ﬁj be the mean duration of a busy cycle

starting in phase j, 1gjsm. The vector i whose j-th entry is

;j is given by

b= uf-R—](O)g (2.4.3)

Remark: Note that the j-th entry of -R'](O)gf; F(0,y)e dy

is the expected duration of an idle period stag;ing in phase
j. In view of this, (2.4.3) is simply the statement that the
expected duration of the busy cycle is the expected duration
of the idle period plus the expected duration of the busy
period following the idle period, a result which again is

intuitively obvious!

We conclude this Chapter by pointing out that it appears
possible to simplify many of the formulas above in certain
special cases. While we shall not pursue this line in detail,
we present below a few results for the PH/G/1 queue to

illustrate our point.

Special Case: PH/G/1 queue (with single arrivals)

In this case since R(0)=T, D=E, C=0, y=0 and U(z,0)=A°°z,

many simplifications occur. For example, we have
B* = (ai)e (2.4.4)

as is seen by specializing in (2.3.11).




B 1

Further, in this case it may be verified that

showing that

independent.

Ko(z,s)=(sI-T)']T°A°G(z.s)
={(sIfT)']If}{gﬁ(z,s)}

the idle period and the busy period are




CHAPTER III

THE STATIONARY QUEUE LENGTH DISTRIBUTIONS

3.1 Introduction

In this Chapter we discuss the stationary distributions
of the queue length (i.e., the number of customers in the
system) at a point of departure and at an arbitrary epoch t.
In general, these two are shown to be different. Section 3.2
discusses the stationary distribution of the queue length at
a point of departure. This is followed by a discussion of the
stationary queue length distribution at an arbitrary epoch t
in Section 3.3. We show that the stationary probability that
the server is idle at an arbitrary epoch t is (1-p) where »
is the traffic intensity defined earlier - a result which is
pleasantly surprising and not too obvious in view of the non-

recurrent nature of the input.

3.2 Queue length at epochs of departure

The stationary queue length density at the point of
departure is denoted by x and is obtained by computing the
invariant probability vector of the irreducible stochastic
matrix Q(~) which under the assumption p<1 is ergodic. The

defining system of equations

xQ(=)=x, xe=1 (3.2.1)




| —

can, after partitioning the yvector x as

X = (50,51,....), (3.2.2)
be written as
i+l
)—(-i=§-OB'i+ ki] -&kA'l-k"']' 1;0. (3.2.3)

Multiplying in (3.2.3) by 2l and summing over i20, we can

easily obtain

Theorem 3.2.4: The generating function

X(2)= t T (3.2.5)

satisfies the equation
X(z)[21-A(z,0)]=x,[U(z,0)-1]A(z,0) (3.2.6)
where U(z,s) and A(z,s) are given by (2.2.3) and (2.2.2)

respectively.

Corollary 3.2.7:

L(l-)=.zoii=-5oR'](0)(T+T°A°)A(I-A+e)']+g (3.2.8)
'|=

Proof: Let z»1- in (3.2.6). We get

X(1-)[1-AJ=x,[U(1,0)-T]A.
Adding X(1-)o to both sides and noting that X(1-)e=(X(1-)e)e=
8 and U(],0)-I=-R'](0)(T+T°A°), we get
X(1-)(1-A+0)=-x R™1(0) (T+T°A° )A+s.

(3.2.8) follows from the non-singularity of (I-A+e) and the
fact that e(I-A+0)=p.




Corollary 3.2.9: X(1-)e=1

Remarks: In practice, the system of equations (3.2.3) is

solved by truncating the number of equations at a sufficiently

large value of the index i and then applying an algorithm
such as Gauss-Seidel. In the next chapter we shall derive
the first two moments of the queue length with which one may
truncate the system (3.2.3) using a "u+30 1imit". Below we
will provide a method of computing X, directly using which
X(1-) may be computed through (3.2.8). Equation (3.2.8)
provides an excellent computational check on the numerical

computation of x.

Below we give an alternate method for determining the
vectors Xy and X, which can be effectively used in the
numerical computation of x for initialization purposes in an

algorithm such as Gauss-Seidel.

Lemma 3.2.10: The matrix L(1,0) defined by continuity in

(2.3.10) is irreducible and stochastic.

Proof: We have

L(1,0)=0(6,0)=-R~1(0) » {T°A®or(K)+Toq(k)+a(r)a(p(k))1e¥

k=1
from which the stochasticity of L(1,0) is easily verified.
Now, since the strictly positive stochastic matrices Gk+G°°

as k»», there exists an >0 such that

6K3cE  for all k21,




where E is the mxm matrix with each entry equal to one.

Then
i L(1,0)2-R™'(0)[R(1)-R(0)]cE=cE>>0,
_ for
} kz]{T°A°or(k)+Toq(k)+A(5)A(g(k))}=R(1)-R(O) *
; and

R(1)e = (T+T°A°)e = 0.

In the sequel we let 59 denote the invariant probability

vector of L(1,0). The computation of Kg» €an, once again,

be easily done by Wachter's method [27]. We now prove

Theorem 3.2.11:

Xy = (soi*)"50 (3.2.12)

where k, is the invariant probability vector of L(1,0) and

% i* is given by (2.3.12).

Proof: The probability x(0,j) is the inverse of the mean
recurrence time of the state (0,j) in the Markov chain Q(=).
That mean recurrence time is clearly the same as the mean
recurrence time of (0,j) in the Markov Renewal Process of
lattice type Ko(z,0)=L(z,0). By applying Theorem 2.11,

p. 196, Hunter [8], the mean recurrence time of (0,j) is
given by (Eoﬁf)/(ﬁo)j where (Ko)j is the j-th component of

ko Whence the result.




We now discuss some special cases and show that the
above formula for Xy particularizes correctly in those
situations.

(a) M/G/1 queue: It is trivial here to verify that

x0=(1-p), for, n0=1 and X0=(ﬁ*)-]=(]-p) in this case.

(b) M/G/1 queue with group arrivals: In this case the

above formula for x, simplifies to
xg = (1-0)/n,
(1)

where n is the mean group size, and p=Anu

(c) PH/G/1 queue (with single arrivals): We have already

shown that in this case L(1,0)=A°°G. Now,
(a6)A°°G=(aGe) (a6) =G
whence Ko=oG.

We noted earlier at the end of Chapter Il that n*=(aup)e.
Putting all this in (3.2.11) we get

,I-'

% % (26G). (3.2.13)

Note the highly intuitive formula

Log=l/(gi)=l/(mean number served in a busy period)

which holds fn this casel {

To obtain the vector X; we consider the first passage
times from the set 1={(1,j): 1sjsm} to itself. Let K1(n,x)

be an mxm matrix such that its (i,j)-th entry is the prob-

ability that starting in (1,i) the Markov Renewal Process
Q(+) returns for the first time to the set 1 in exactly n
steps at or before time x and that the phase at the epoch

of such a first return is j. Let




T e'sxdk](n,x), [z]<1, Re s20.
0-

nor~8

K](z,s)=
n=0

Theorem 3.2.14

K](z,s)=22A0(s)[I-zBo(s)]'] ; B (s)G“'](z,s)
v=1 V

i ; A(5)6% (z,5). (3.2.15)

v=1
Proof: By a simple probabilistic argument considering the

paths which pass through 0 and those that do not, we have

K,(z,s)=2zA-(s) = z"B (s) £ zB (s)6°"'(z,s)
] O r=0 0 v:] v K

+ ¢ zA (s)G“'](z,s), l
v=l VY ]

and simplifying we get (3.2.15).

Corollary 3.2.16: K](],O) is irreducible and stochastic.

Theorem 3.2.17: Let (3 denote the invariant probability

vector of K](I,O). Then

) W (.'S.]ET -]5_]. (3.2.18)

where 5f=%; K](z,O) is the vector of the mean number
Z2=1 =

of steps in a first passage from 1 to itself and is given by

i )
57-3+A0(I—BO) e +
A(1-B.)" Ve £ B - 86"+ T (ve)B G°°) +
0 b 0 z \’- z v z V- )B\) }
vel ¥yl v=2
(A-Ag)- = A 6" 1+ & (v-1)A 6°° |(1-6+6°°)" 15 (3.2.19)

v=1 v=2




Proof: Note that ky is the vector of mean sojourn times in
the Markov Renewal Process K](z,o) which is of lattice type.
The formula for X3 is got by an analogous argument as in
Theorem 3.2.11 using a theorem in Hunter [8]. The formula
for 57 given above is obtained by directly computing

%7 K](z,O) using (3.2.15) and simplifying the resulting

expression.

Remarks:

(i) It can be verified that the expressions given for
Xg and Xy in (3.2.12) and (3.2.18) respectively do indeed
satisfy the steady state equation

Xg = XoBotxyA,- (3.2.20)

We shall omit the tedious details and refer the reader to
Lucantoni [11] for such a verification in a more general set-
up.

(ii) Equations (3.2.12) and (3.2.18) are easy to
implement and have been successfully used by Lucantoni [11]
for numerical computation of ﬁb and X, in more general
models than the one discussed here.

(iii) The steady-state equation (3.2.20) provides a
powerful computational check for the numerical computation

of Xy and X4 using (3.2.12) and (3.2.18) respectively.

3.3 Queue Length in Continuous Time

In this section we discuss the stationary distribution

of the queue length at an arbitrary epoch. We define




y(i,j)=Lim P[X(t)=1,d(t)=j|x(0)=i"',d(0)=j"']

trw
where X(t) and J(t) denote respectively the queue length and
the phase of the N-Process at t+. Let Y be the m-vector
whose components are y(i,j), 1sjsm and let y=(y;.¥y>....).
We also define the generating function

Y(z) = 3 xizi
i=0

Lemma 3.3.1:

u(])-zoR'j(Oig?u(])/p=(£*)" (3.3.2)
Proof: From the relation

A(z,O)=Z exp{R(z)t}dH(t)

we have

R(z)A(z,0)=A(z,0)R(z). (3.3.3)

Differentiating this with respect to z, letting z+1- and

multiplying the resulting equation by e, we get
(T+T°A°)B=(A-I)R'(1)e=(A-I-0)R"'(1)etoR"'(1)e (3.3.4)

Now, differentiating (3.2.6) with respect to z we get on
letting z»1-,

X'(1-)[1-AJ+X(1-)[I-A"(1-,0)] =
Xo[U(1,0)-1]A* (1-,0)+x4U" (1-,0)A

Adding X'(1-)o to both sides and multiplying by e we get

X' (1-)e#1-X(1-)g=-xoR™ 1 (0) (T+T°A*) g-xoR ™! (0)R* (1)e#x' (1-)e




In the above if we substitute the value of X(1-) using

(3.2.8) and the value of (T+T°A°)B using (3.3.4) and

simplify, we get

-xoR™ (0)0R" (1)e=(1-p) (3.3.5)
or

(-xgR™'(0)e) (eR* (1)e)=(1-p).

That is -Xg R™ (O)e (1-p)/&*. The Lemma follows by noting
that g*=pR' ('l)g=p/u“).

Theorem 3.3.6:

Yo = -E*xR71(0) (3.3.7)

Proof: Recalling that R:jJ (+) are the renewal functions of
the Markov Renewal Process Q(-), we can write by a standard
argument considering the state of the semi-Markov process

Q(+) at the epoch of the last transition before t,

t
P{X(t)=0,d(t)=j|Xx(0)=i',0(0)=j"'})= g s dr}

()P4 (0,t-u).
k=1 0-

Ok

Letting t»«= in the above equation and applying the Key
Renewal Theorem (Theorem 6.3, p. 153, Ginlar [2]),-we get

m ©
y(0,j)= ¢ m'](o,k)f Pk-(O,u)du (3.3.8)
k=1 0- J

where m(0,k) is the mean recurrence time of (0,k) in Q(:).
By considering the Markov Renewal Process Ko(l,s) it is
easily seen that m(0,k) is also the mean recurrence time of

(0,k) in this Markov Renewal Process. By Theorem 2.11,

p. 196, Hunter [8], we have




m(0,3)=(kqu)/(kg)ys Tsigm (3.3.9)

where X0 is the invariant probability vector of
K0(1,0)=L(1,0) and u is the vector of mean durations of the
busy cycle given by (2.4.3). Putting (3.3.9) in (3.3.8) and
writing (3.3.8) in vector notations, we have

2y * (505)']50[-R'](0)]

= [egur-koR7T(0)e1 7 [-kR7T(0)] by (2.4.3)

[ egix-kgR™ 1 (0)e1 7 [k R7T(0)] by (2.3.15)

= LM xr T (0)ed -2 R T (0)] by (3.2.12)

-E*LOR-](O) by 8. 8.2

Corollary 3.3.10: The stationary probability that the

queue is empty at an arbitrary epoch t is given by
Yol = (1-0) {3.3.11)

Proof: This follows easily from (3.3.7) and (3.3.2).

Special Cases:

1. For the M/G/1 queue (with group arrivals) it is easily
verified that (3.3.7) reduces to y0=(1-p).

2. For the PH/G/1 queue (with single arrivals), formula
(3.3.7) can be shown to reduce to

Yo = (267 "e-u(Ma) a6

from which we get

voe=(-a6T Teru (M ai) =T (-ae77Te) (3.3.12)




These are obtained by using (3.2.12) and the fact R(0)=T.
In (3.3.12) it may be noted that (-gﬁT-]g) is the expected
length of an idle period, for, a busy period starts with a
phase given by o whence the phase at the end of the busy

period is given by aG, and further -T']

gﬁ? P(0,y)e dy. Thus
Yoe in (3.3.12) which is the stationary p?gbab11ity that the
queue is empty at an arbitrary epoch t is simply the ratio
of the expected duration of an idle period to the expected
duration of the busy cycle, a result which is quite

intuitive!

Let us now define

; dgv(")f'k-](o)s*v(”g

§=/ X
=0 b-

v=0

and

§,5/ x I dA (x)g?u(])g, k21.

0- v=0 VY

Also let g'=(g6,g',....). Note that &(i,j) is the mean
sojourn time in (i,j) for the Markov Renewal Process Q(-).

From this we have

Theorem 3.3.13: The mean recurrence time of (i,j) in the

Markov Renewal Process Q(-) is given by

mo (i,3)=(x8) " x (1, 5)=g*x(1,3) (3.3.14)




Proof: It suffices to verify that

x6 = xol-m" (e Mele 3 x Ve

-Xg R™ (0)e+u(]) since
n

no™sg

x e=]
o™

(g*)"! by (3.3.2)

We are now ready to compute the vectors y., izl.

Theorem 3.3.15: For i21,

i ®
Yi® f 5*[£0UV(°)f£v]£-{]‘H(")}P(i'v'“)d“ (3.3.16)

v=1

3 Proof: By considering the epoch of the last departure

: before t we can write

P{X(t)=i J(t)=j|X(0)=i' J(0)=j'} =

t
s z dRBkJ (u) ’ {1 A(t-u-x)} z z [d0,(x)], Pps(i-vst-u-x)
0- k=1 0- v=1 p=1 P P
- O ){1-fi(t-u)}
+ T f r dR u)P,:(i-v,t-u -H(t-u
v=1 0- k=1 K kd

Letting t+= and applying the Key Renewal Theorem (Theorem
6.3, p. 153, ginlar [2]) we obtain

y(i,j)=
moy © i
= 0,k)/S 1-H(t-x)} du i-v,t-
ki:]m ( )0 {6{ (t-x) vf] p§1[ (X)]kp pJ( -v x)}
i m
; + I (v,k)f P J(1 -v,t){1-H(t)}dt

v=1 k l




T

—

Using (3.3.14) and putting the above in matrix notations

I el i
Y:=E*xo S {S {1-H(t-x)} £ dU_(x)P(i-v,t-x)}dt
i 0 0-10- v

v=1

i L 2
+g* I x S {1-H(t)}P(i-v,t)dt. {3.3.17)
v=]""Y Q-

Now

" i
S f {1-H(t-x)} = d0_(x)P(i-v,t-x)dt
0- 0- v=l V

Vel © -
=/ £ dU (x)Sf {1-H(t-x)}P(i-v,t-x)dt
0- v=1 V X-

i .
= £ U (0)sf {1-H(u)}P(i-v,u)du.
v=1 Y 0-

Putting this in (3.3.17) and simplifying we get (3.3.16).

Theorem 3.3.18: The generating function Y(z)= : liz' is
i=0
given by

£*(2-1)X(2)R71(2) if 0gz<1
Y(z) = (3.3.19)
8 ‘ if z=1

Proof: We have, for 0gz<1,

s 1 ©
¥(z)-yo* £ % 5*[50Uv(0)+5v]6 {1-f(u)IP(i-v,u)du z

i=1 v=

o™ 8
—

: 5*[£0UV(0)+£v]ZV 6_{1-ﬁ(u)}ﬁ(z,u)du

=5*[50{U(z,0)-11+1(z)]z {1-H(u)}P(z,u)du  (3.3.20)




Under our assumption R(0)#Q* it is easily shown that R(z) is

é" . stable for 0gz<1 and thus R™1(2) exists for 0sz<1. (The

1) proof of this is exactly analogous to the one establishing
the non-singularity of R(0) presented in Section 1.3 and
hence omitted.) Thus

Z {1-fi(u)}P(z,u)du=[A(2,0)-1IR" ' (2), 0<z<1,

for, 5.
A(z,0)=£ exp[R(z)t]dH(t).

Putting this in (3.3.20) and simplifying with (3.2.6) and
(3.3.7) the expression for Y(z) for 0sz<1 is obtained.
Now, by letting z+1- in (3.3.20), we have

1(1-)=5*[}10R-](0)+{'£oR'](0)Q*+L(1-)}Z (1-(u)3P(1,u)du
E {3.3.2%)

It is now easily shown that Y(1-)e=1. Now,

{-50R'](0)Q*+5(]-)}Z CH-REWIIBLY 0 )du
= (-xoR™1(0)Q*+g-xgR™" (0)Q*A(1-A%e) T
x Z {1-A(u)Yexp(Q*u)du by (3.2.8)
=u“)9_-50R'](0)[I+A(I-A+e)']]0*}; (1-fi(u)Yexp(Q*u)du

using the commutativity of Q* with A and o.

=ulD gy R7T(0)[1+A(1-A+0) "1 1[1-A]




- —

Substituting this in (3.3.21) and post-multiplying by
Q* it is easily verified using 6Q*=0 that

Y(1-)Q* = o.

We already noted that Y(1-)e=1. Now by the uniqueness of
the invariant probability vector Y(1-)=p0.

Remark: Note that the j-th component of Y(1-) is the
stationary probability that the phase of the N-Process is j.
Clearly this must be 6., for, 6 is the invariant probability

J
vector of the Markov Process Q* governing the phases. 1

We now verify the correctness of (3.3.19) by particula-

rizing it to the

Special cCases:

1. M/G/1 queue (with single arrivals): Noting that in this

case £*=x and R(z)=a(z-1), (3.3.19) reduces to Y(z)=X(z).
Also, after some tedious computations using (3.2.6) we can

obtain

Y(z)=X(z)=(1-p)(1-2)H(A=-22)/{H(r-22)-2}

2. M/G/1 queue (with group arrivals): 1In this case after

some tedious computations one gets

Y(z)=(1-p)H(A-2¢(2)) 437y X(2)(1-H(A-20(2))1,

for, in this case

¥o=(1-0)s xg=(1=p)/n, U(z,0)=¢(2), -R"'(0)=1/2




s*

i

1 where ¢(z) is the p.g.f. of the group size and n=¢'(1-).
3

1 The expression for Y(z) given here coincides with that
E obtained earlier by Neuts [19].

3

i
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CHAPTER IV

MOMENTS OF THE QUEUE LENGTH

4.1 Introduction

It was pointed out earlier that the first two moments
of the queue length can be used to truncate the infinite
system of equations

xQ(=)=x, xe=1
defining the stationary probability vector x. While it
would be ideal to have efficient methods for optimally trun-
cating the system above, nevertheless, the problem of
obtaining suitable criteria for this purpose appear quite
intractable, and in the absence of such methods one has to
rely on some simple procedures such as using a "u+3c limit".
Fortunately, computational experience reported by Neuts [18]
and Lucantoni [11] seem to favor such a procedure. We shall,
in this Chapter, obtain the moments of the stationary queue
length distributions obtained in Chapter III.

The moments of the queue length are closely related to
the derivatives of the Perron-Frobenius eigenvalue and
associated eigenvectors of the matrix A(z,0+) as z>1-. We
derive the recurrence relations for computing these deriva-
tives in Section 4.2 using which formulas for the first two

moments of the queue length are derived in Section 4.3. For




a semi-Markoy process G(+) having a structure more general

than the one given by (1.4.1), a program for computing the

vector x and its first two moments using similar techniques
has been written in APL by David Lucantoni [11] and is seen
to be very efficient. We refer the reader to [11] for

details of this program.

4.2 Derivatives of the Perron-Frobenius Eigenvalue

Just as in Theorem 2.2.8 which establishes the irreduci-
% bility of A, we can show that the nonnegative matrix A(z,0)
for 0<zgl is irreducible. We let n(z) denote the uniquely
defined Perron-Frobenius eigenvalue of A(z,0) which is
analytic for z<1. Let u(z) and v(z) be the right and left
eigenvectors respectively of A(z,0) corresponding to the
eigenvalue n(z), whose components are defined to be analytic

for z<1 and such that
v(z)u(z)=v(z)e=1 (4.2.1)
v(1-)=8, u(1-)=e (4.2.2)
hold, in addition to the defining equations
[A(z,0)-n(z)I]u(z)=0 (4.2.3)
v(z)[A(z,0)-n(z)1]=0. (4.2.4)
Below we present a theorem which shows how the derivatives
n(")(l-), g(")(l-) and 1(")(1-) can be evaluated recursively

on n, provided that moments of a sufficiently large order

exist for the entries of A(z,0). Below we denote

3—"; A(z,0) by A" (1,0).
3z z=1-




Theorem 4.2.5: The triples n(")(] P (")(1 ) and v(")(l

n>0 may be computed recursively for each n for which the

witrinss 140} 1o Panseel Wha Paclrston  foliunbetnit
(0 (1-)=1, g(o)(l-)=g, 1(0)(1-)=g (4.2.6)
n(])(l-)=ps g(])(1-)=(I-A+6)'1§-pg,
v ()= (1,0) (1-a+6) -0 (4.2.7)
and for n32,
Mo 3 Hat a0 a0 5 00 (1)0u (") (1)
(4.2.8)

v(M(0)-"; ( My oy (1,0)-n (V) (1) 1y (1-a0) 7!

v—

oM (1o)=(1- A+e)"[:z (Ml a0 0oy “)(1-5]

- %1(3)1(“)(1-)2("f“)(1-)g (4.2.10)

v

Proof: Differentiating (4.2.3) n times with respect to z we

get

(Ma) (2,000 (2) 170" (2)=0.

n™Mm3
o

v
Pre-multiplying this equation by v(z) and letting z+1- yields
in view of (4.2.2),

2 (MEeal) (1,000 (140307 (14)=0

v=0

from which we have

e ————




-
nz n(v)(l-)gg("'v)(l-)

v=l
(4.2.11)
Cb vl ts ikintrantevai0l (140) Teiriaitel "B Ehe caskiEe) the

ntM (1-)- gl(g)gA(“)(l,0)9("'V)(l-)-

\)=

second term in (4.2.11) is zero and the first term equals
gA(])(l,O)g;ggfp showing n(1)(1-)=p.
Differentiating (4.2.4) once and letting z+1- we get
v oy r1-a1=0A M (1,0)-n M (10) 17
or

v (122008 M (1,00 -0 M (1) 17 (1-A%0) ey (D (120
o1 (1,0) (1-A+0)" 100,

for, the second equality in (4.2.1) implies 1(])(1-)g=0

whence !(])(1-)0=g.

In general, differentiating (4.2.4) n times yields

after letting z-»1-,

-1
WM o122 (M=) 1,0y 0V (117,

v=0
Adding 1(")(1-)0 to both sides and noting that 1(")(1-)e=g
because of the second equality in (4.2.1), we get (4.2.9).
Differentiating (4.2.3) n times we get after letting

Z+.|-’

(1-a)u™ (1-)- 2](2>[A‘“’(1,o>-n(“)(1-)113‘"'“)(1-).
&

Adding eg(n)(l-) to both sides we can rewrite the above

equation as




‘i;;,ﬂm__;;m;;_m. — ’ p— —— *‘“"““””“”5!‘

"M (1-)=(1-a40) ! g](g)[A(“’(1,o)-n(“)(l-)r]g‘"'“)(l-)

v

+[ouM(1-)1e (4.2.12)

Differentiating v(z)u(z)=1 n times and letting z+1- we get

oM 1o)== 3 (M 1Y) (a0

v=1

n-
=- I

v=1

1 i
My aaulrv o), (4.2.13)

for, v(z)ez=1 implies 1(")(1-)930. Using (4.2.13) in
(4.2.12) we get (4.2.10). In the case n=1, the sum in
(4.2.13) is zero and

M= (1-a+0) 1AM (1,00 -0 M (1) 1709 (1) |
=(1-A+0) ' [g-pel=(1-A+0) 'g-pe, i

and the proof is compliete.

4.3 Moments of the Queue Length

In this section we derive the first two moments of the
queue length in terms of the derivatives obtained in
Theorem 4.2.5. We wish to derfve formulas for computin~
X'(1-)e and X"(1-)e. To this end let us recall the equation

(3.2.6)

X(z)[z1-A(z,0)]=x,[U(z,0)-1]A(z,0)
Multiplying this by u(z) we get

[z-n(2)1X(2)u(z)=n(z)x4[U(z,0)-1]u(z) (4.3.1)




Differentiating this with respect to z and rearranging

X'(z)u(z)=-Xx(z)u'(z)+
;:%(;y[}(1-n'(z))L(z)g(z)+n-(z)éo{u(z,o)-l}g(z)+
"(Z)AOU'(Z,0)2(2)+n(2)10{0(z,0)-1}g‘(zi] (4.3.2)

Now, as z-1-,

=(1-n'(2))X(2)ul(z)>-(1-p)X(1-)e=-(1-p)

n'(z2)xy{U(z,0)-TIu(z)+px,{U(1,0)-1}e=0

n(z)xgU' (2,0)u(z)+-x R"T(0)R'(1)e  using (2.2.5)
and

n(z)xy{U(z,0)-T}u'(z)~

xo[-R"T(0)R(1)I[(1-A+6) Tg-pe] using (2.2.5) and (4.2.7)
=-xgR™1(0)(1-A+0)™ 1 (T+T°A°)8, for R(1)=T+T°A° and R(1)e=0.
=-xoR™1(0) (1-A+0) T[(A-I-0)R' (1)e+eR' (1)e] by (3.3.4)

Putting all these together, it is seen that as z+1- the term

in square brackets in (4.3.2) converges to

~(1-p)-x4R" " (0)0R" (1)e=0 (4.3.3)
by (3.3.5).
Thus to evaluate the limit of X'(z)u(z) in (4.3.2) as z»1-,
we apply L'Hospital's rule on the second term in the right

side of (4.3.2). After some tedious computations it may be

verified that this yields




X'(1-)e=-X(Nu'(1-)+
ﬂ'%j;)‘E\"(L')"‘ZpE_OU"(] ,0)_8_+2p_)_(_0(U(] ,0)-1}&'(]-)
+2£0U'(],0)g'(1-)+£0U"(1,O)Qfﬁo{U(T,O)-I}g"(1-i] (4.3.4)

Now,
U(z,0)=I1-R™1(0)R(z)

implies
20x5[U" (1,0)e+{U(1,0)-T3u"(1-)]=

-2p50R'](0)R'(1)gf2950{‘k-](0)(I'A+e)-](T+T°A°)£} ?{.2.7)

=-2oxgR” (O)R" (Der2oxgU-R™ (ODL-R' (1eror’ (el by

=-2ox,R” 1 (0)eR" (1)e
=20(1-p) by (3.3.5)
Using this in (4.3.4) we simplify the expression for X'(1-)e

and state the result as

Theorem 4.3.5: The stationary expected queue length immed-

iately after a departure is given by
X'(1-)e=-X(1-)u'(1-)+p+
7(%:;y[}"(1-)+2§0U'(1,0)2'(1-)+§0U"(1,0)Ef
LO{U(I,O)-I}Q“(l-ﬂ (4.3.6)

The correctness of (4.3.6) is verified by particularizing to
the

‘. . " —— . - —
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Special Cases:

a) M/G/1 queue: Here U(z,0)=z, u(z)=1. So, (4.3.6) re-
' e 1 2 (29
duces to X ('l-)-p"'-z-(-l—_p')j AT

and u(2) is the second (raw) moment of H(-).

, where A is the arrival rate,

b) M/G/1 queue with group arrivals: Here U(z,0)=¢(2),

where ¢(z) is the p.g.f. of the group size, and u(z)=1. So |

we can easily verify that

X' (1-)=p4grpyln" (1-)+xg4 " (1)1,

Now :
n"(l-)=A"(1,o)=x2u(2){¢'(1-)}2+$1{T:7-¢“(1-),
since
A(z,0)=r e-A[1-¢(2)]t gi(¢).
0-

It has already been shown that x0=(1-p)/¢'(1-) whence we
have

X'(1-)=p+2—n]_—p)'E\2u(2){¢'(1-)}2+L%—-}¢? }: J

Theorem 4.3.7:

X' (1-)=[xoU" (1,0)A+xo{U(1,0)-T}A" (1,0)-X(1){I-A"(1,0)}]1(I-A+e)""
+(x'(1-)ee

Proof: Differentiating (4.3.1) with respect to z and letting

z+1- we get

i'(l-)[I-A]=50U'(I,0)A+50{U(1,0)-I}A'(1,0)-1(1){I-A'(1,0)}.

Adding X'(1-)e to both sides and simplifying we get the L

expression for X'(1-) given above.




We also obtain a formula for the stationary mean queue

length in continuous time.

Theorem 4.3.8: The stationary mean queue length in contin-

uous time is given by : t
Y (1-)e=p (X' (1-)e-xoR™ T (0)R* (1)ep+e?y(2)
k[ =1 * (]) * * * t2ns
E¥{-xgR™ (0)Q*+X(1-) HI-A+u' " /Q*} (t*0-Q*) "“R'(1)e,

(4.3.9)

where t* is any real number such that

eoe

r*;m?x(-0§1).

Proof: Differentiating (3.3.19) with respect to z, letting
z+1- and post-multiplying by e we get

Y (-)eme*lxgu (1,0)+x' (1-)1u{Me +
£*Lxp(U(1,0)-1HX(1-)]7 (1-R(£)1g(t)dt
=0 (X' (1-)e-x R (0)R" (1)e} +

5*[-5OR'](0)Q*+L(1-)]z-{l-ﬁ(t)}[%R'(l)gt +

{I-eQ*t}{r*e-Q*}"R'(1)g]dt (4.3.10)
by (1.3.13)

where t* is any real number such that 1*;max(-Q;i)
i

Now
{I—eq*t}(T*G'Q*)=T*9'T*0-Q*{I-eQ*t} e
for,

*
't

0=0,




whence
(1-eV"ty (rr0-q*) 1 =-qr(1-e9"%) (rr0-0%) 2.
Thus

/ (-i(t)111-e 1 (rr0-q* 17 TR (1) edt

=-Z (1-A(t)10*(1-e9* trdt(r0-0*1"2R" (1)e
=-[u(‘)0*+(I-A)][r*e-0*]‘2R‘(l)g, (4.3.11)

for,

r 01-f(t)1qre? tat=A-1
0-
as can be seen by integration by parts and (2.2.9).

Putting (4.3.11) in (4.3.10) we get (4.3.9).
We now verify the correctness of (4.3.9) by particular-

izing to the

Special cases:

a) M/G/) queue: In this case (4.3.9) reduces to

y! (])=p{(p+-2—(-]———)- ).Zu(z))+(]-p)}+12-(_%r).)2u(2)
n

1-p

orgrimy A4 Her )

as is well-known.

b) M/G/1 queue with group arrivals: Here (4.3.9) reduces to

e
Y'(1)=p{X"'(1)- (-l)u'(]-)}ﬂ( ) (2)
= XO A f:%r)" H

: 2 (2) 2, ¢"(1- Hesics 2 (2)
o+7ﬁ—_7y[x u el e(1-)) oy :]+2-{x¢ (1-)1%u




Snus i S A A el (1=) 1 $"(1-)
orgTieT A 1 -1 Pegriy L 3 S

We are now ready to obtain the second (factorial)

moment of x. We state our result as

Theorem 4.3.12:

X"(1-)e=-2X" (1-)u' (1-)-X(1-)u"(1-)+n"(1-)-2?
+§(%:;T[5m(1-)+{3n"(1')+6p(1-p)}{i'(1-)Q+L(1)g'(]-)}
~3pn" (1-)4xU"(1-,0) e*3xoU" (1-,0)u’ (1-)
+3x0U" (1-,0)u" (1-)+x, (U (1 ,0)-1}3"'(1-a (4.3.13)

Proof: Differentiating (4.3.2) twice with respect to z and

rearranging the terms we get

X" (2)u(z)=-2X" (2)u(z)-X(z)u"(2)
+ Z-n]z Ez{l-n'(Z)}L'(Z.)!(Z)-Z{]'“'(Z)}Z_(Z)u'(‘z)+

n"(2)X(z)u(z)+n"(2)x,(U(2z,0)-TYu(z)+2n" (2)xyU"' (2,0)u(z)
+2n' (2)x4{U(z,0)-1}u'(2)+n(z)xyV"(z,0)u(z)+

Zn(z)50U'(z,0)g‘(z)+n(z)50{U(z,0)-I}g“(zi] (4.3.14)




Now as z+»1-, the quantity in square brackets above converges

to

=2(1-p)x' (1-)e-2(1-p)X(1-)u' (1-)+n"(1-)+2px,U" (1,0)e+
20%TU(1,0)-T}u' (1-)+x,U"(1,0)e+2x,U"' (1,0)u' (1-)+
xo{U(1,0)-13u"(1-)

=-2(1-p)X" (1-)e-2(1-p)X(1-)u' (1-)+n"(1-)+20(1-p)
+xgU" (1,0)e+2xyU" (1,0)u’ (1-)+x,{U(1,0)-T3u"(1-)

=0 (4.3.15)

where the last equality above is got by substituting the
value of X'(1-)e from (4.3.6) and the one before that is

got by using (4.3.3) which implies
E_OU'(]’O)Q_"_&O{U(] ,0)-1}2'(1-)=(]-p). (4°3-]6)

Thus to evaluate the limit as z»1- of (4.3.14) we can apply
L'Hospital's Rule on the third term in the right side of

(4.3.14). After some gruesome computations we get
X"(1-)e=-2X"(1-)u' (1-)-X(1-)u"(1-)+
3—(-}—_—0)-[3n"(1-)2<_'(1-)g+3n"(1-)1(_(1-)y_'(1-)+n"‘(1-)
+3n" (1-)x4U' (1,0)e+3n" (1-)x,{U(1,0)-T3u'(1-)
+3px5U" (1,0)e+6px,U" (1,0)u’ (1-)+3px4{U(1,0)-T}u"(1-)
+xoU™(1,0)e+3x,U" (1,0)u’ (1-)+3x,U" (1,0)u"(1-)

+£0{U(1,0)4I}g“(1-{]




=-2X'(1-)u' (1-)-X(1-)u"(1-)+
3—(-}—_—9-7E1"’(1-)+3n"(1-){5'(1-)g+5(1)g'(1-)+(1-p)}
+3p{2(1-p)X' (1-)e+2(1-p)X(1-)u'(1-)-n"(1-)-2p(1-p)}
+x9U"(1,0)e+3x,U" (1,0)u’ (1-)+3x40" (1,0)u"(1-)
+_)_(_0{U(1,0)-I}y_"'('|-)J by using (4.3.16).

Now (4.3.13) is got by using (4.3.15) in the above equation.

Remarks:
1. As pointed out earlier the formulas (4.3.6) and (4.3.13),
in spite of their forbidding forms, are well-suited to
numerical computations.

2. Higher moments of the queue length can, in principle, be
found using similar techniques. But the resulting formulas
become extremely difficult to implement. Usually, however,

these are beyond the realm of practical interest.




CHAPTER V
THE VIRTUAL WAITING TIME

5.1 Introduction

The virtual waiting time V(t) at time t is the length of
time a customer who arrives at time t waits before entering
service. Recall that J(t) is the phase of the arrival process
at t+. In this Chapter we derive the joint distribution of
V(t) and J(t) as t>=. To this end it shall be assumed that
the arriving groups are served on a first-come-first-served
basis; we shall not assume anything regarding the order of
service within each group.

The formula for the steady-state Laplace-Stieltjes
transform of V(t) generalizes the well-known Pollaczek-
Khinchin formula of the M/G/1 queue to the N/G/1 queue. It
is also shown that the steady-state c.d.f. of V(t) satisfies
a Volterra system of integral equations. It is weil-known
that such a system can be solved numerically with considerable

ease using classical methods.

5.2 Distribution of the Virtual Waiting Time

Let

2

Hy(x)=Lim PIV(t)5x,d(t)=3X(0)=1,0(0)=3"1, x20, 1<j<m

t-Nn




T T p———

e e e —

The Laplace-Stieltje's transform

W (s)= f i dN (x), Re s20.
0-

We also let W(-) and W(-) denote the m-vectors whose j-th
components are ﬁj(o) and wj(-) respectively. Also ﬁ(“) will

denote the v-fold convolution of H with itself.

Theorem 5.2.1:

sy (ST+RIH()D™T 4f 550
W(s)= (5.2.2)
[} ' if s=0

Remark: Formula (5.2.2) is a direct generalization of the

Pollaczek-Khinchin formula to the N/G/1 model.

Proof: By a direct probabilistic argument considering the

last departure epoch © before t we obtain

PLO<V(t)sx,d(t)=3|Xx(0)=1,9(0)=j"]=

L m i o X = ~(V]+\’2'])
> 1 Jk(r) I Ppi(vyst-t) s di(t+w-1)H (x-w)
vi=1 k=1 1=0- v,=0 w=0-

: R e N ).
G f dR %) A z t [dU u Vvyast-1T-U
k=1 x=0- 0K " Tuz0- vi=1 p=1 V1 kp v,= i
v +v2-1)
I dH(t+w-t-u) H (x-w)
w=0-
The two terms above on the right side correspond respectively

to the two cases diagramatically shown below.




A

Case 1: Figure 1

X(r)=v]gl at least v]+v2-1 depart

J(t)=k J(t)=j Ve il o ~N
2 t tw tx
L )

vy arrivals

L J

~

service time

Case 2: Figure 2
“zJ(?)=J
X(t)=0 arrive | at least vy+v,-1 depart
J(T)=k f_/\-“‘ 7 A -
T ttu t t+w t+x
no - —~———
arrivals

service time

Letting t+~ in the above equation and using the Key-Renewal
Theorem (Theorem 6.3, p.153, G¢inlar [2]), we get

Lim PLO<V(t)sx,d(t)=3]X(0)=1,0(0)=j"]

>

o m o ©
sg* I S X(v],k)dt L
V=1 k=1 t=0- Vo=

(v]+v2-1)

ij(vz,t)wz _dﬁ(t+w)ﬁ (x-w)

0 0

m © t o m '
+¢* ¢ x(0,k)dt s t £ [dU (t-y)] £ P .(v,,y)dy
k=1 t=0- y=0- vi=1 p=1 Vi kp v,=0 P32

|4
].
i
is
)
!.

X 2 (vytv,=-1)
s dA(y+w)i 1 2
w=0-

(x-w)

whence,




!(x)‘10=
® w A ~(v.l"'vz-'l)
BE S0 F & by P(vz,t)dt r dH(t+w)H (x-w)+
vi=1 t=0-""1 v,=0 =0-
1 2
® t © €0 X ~
5*50 ;S dt s I [de (t-y)] = P(vz,y)dy S dH(y+w)
t=0- y=0- v]=] 1 v2=0 w=0-
L(vatv,=T)
H 3 , (X-W),
for, g
H(0)=y,. ‘
Thus, i |
W(s)=y,*ss e SX{H(x)-H(0)}dx )
0+ :
=10+sg* ; X, ; e SXdx 7 ; P(vz.t)dt ? dH(t+w) ;
v1=1 1 x=0+ t=0- v2=0 =0- :
(vytv,-1)
il (x-w)
+sE* 5 PR ¢ aE
E*%g U, J &7 Tdx ! z P(vz,t)dt S dH(t+w)
v-l=] .I X=0+ t=0- \’2=0 W""O‘
(vy+v,-1)
il 2 (x-w)
ey © © ) ] -SW .= V-|+V2"|
“Yatt* T x. / & I P(v,,t)dte “"dH(t+w)H (s)
v]=1 1 t=0- w=0- v2=0
® ® ® ® 3 Vytva=1
N T T e I P(vy,t)dte”SVdi(t+w)H | 2 (s)

U o 1 V] 20 wal= yus
v]—l 1 t=0- w=0 Vo 0

which on noting

£ P(v,t)z =exp{R(z)t}
v=0

yields




E(s)=xo+g* 215“ tfo fo exp{R[H(s)]t}-dte'swdﬁ(t+w)H“'1(s)
v: = - w.'-' -

e exp{R[H(s)]t}-dte SWdii(t+w)H "1 (s)
1 t=0- w=0-
(5.2.3)

o8

+g*£0
v

Now,
Z exp{(sI+R[H(s)])t}-dt={exp(sI+R[H(s)])w-I}{sI+R[H(s)]}']

Since the integral on the left side of the above equation is
analytic in Re s>0, the right side has only removable sing-
ularities at a finite number of points in Re s>0, where the

inverse fails to exist. Thus

s exp{R[H(s)Jt}dt s e SWdi(t+w)

t=0- w=0-

=/ exp[{sI+R[H(s)]}t]-dt Foe Vi)
t=0 y=t-

=[;; exp{R[H(s)Iw}+dH(w)-H(s)I (sI+R[H(s)])']

Using this in (5.2.3), for s>0,

!(s)=10+£*{%0 : U HY" 1(S)+ z X H“ ](S{}

v=1
[’; exp{R[H(s)Iw}-dfi(w)-H(s)]I (sI+R[H(s)])']
W

= Yo E*rsTLEQU (H(5),0)+X(H(s))-xy]-
[A(H(s),0)-H(s)II(sI+R[H(s)]) "
=yt xR ™ (OJRIH(s)1(ST+RLH(5)])™"

as can be seen by using (3.2.6) and (2.2.5). (5.2.2) now
follows for s>0 from (3.3.7).




Multiplying both sides of (5.2.2) by sI+R{H(s)],
ﬂ(s)(sI+R[H(s)]}=slo.

Letting s+0, we get W(0+)Q*=0. So to show that W(0+)=¢ it
now suffices to prove that W(0+)e=1. To this end multiply
(5.2.3) by e and let s+0 to get

rodt £ e SWdA(t+w)

W(0+)e= +Lim £*
W(0+)e=(yge)+Lim & (x,e) Lo 0

s+0 v=1 t

tLim exxge s dt s e SVdii(t+w),
s+0 t=0- w=0-

for,

exp(Q*t)-e=ze
and

o«
I U e=e.

] v

v

Thus

W(0+)e=(1-p)+e*Lim s dt s e >YdA(t+w) by (3.3.11)
s+0 t=0- w=0-

=(1-p)+€*u(1)
=(]'P)+p=]a

and the proof is complete.

Remark: Note that for the M/G/1 queue, (5.2.2) reduces to

the well-known Pollaczek-Khinchin Formula

= S(1-
us) = Sy - o0,

for, in this case y0=(1-p) and R(z)=-a+rz.




e o

Theorem 5.2.4: The vector W(x) satisfies the Volterra system

of integral equations
ﬂ(x)-10+ﬂfk(x). x20
where,

X % alk)
K(X)-I[A(L)A(_e_- z p(k)H'" (y))
0 k=0

-To ; q(k)ﬁ(k)(y)-T°A°o ; r(k)ﬁ(k)(yi]dy, x20
k=0 k=0

Proof: From (5.2.2) it is seen that for s>0,

!(s){sI+R[H(s)]}=51O

or
W(s)=yo*H(s){-+ R[H(s)]}.

Now

(5.2.5)

(5.2.6)

-+ RLH(S)T=104(0) (1-4(8(H($)))}-Toy (H(s))-T°A%00 (H(s))],

which shows that -% R[H(s)] is the Laplace-Stieltjes

transform of K(-) given in (5.2.6). Hence the Theorem.
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